Voor de geïnteresseerde lezer hieronder enige technische uitleg over hoe een wiel werkt en wat belangrijk is om op te letten.

Waarom fabriekswielen voor een gemiddelde rijder worden gemaakt

Fabriekswielen worden gemaakt voor de gemiddelde rijder met een gemiddeld gewicht van rond de 85 kg. Door een robot afgesteld met een matige tolerantie zorgt dit uiteraard voor een zeer gemiddeld wiel. Voor een rijder van 65 kg meestal geen groot probleem omdat de wielen amper belast worden. Voor een rijder die meer weegt dan die 85 kg kan het al snel een probleem worden. In feite worden wielen die gemaakt zijn voor een rijder van 85 kg door een rijder van 100 kg overbelast. Vaak zie je op fabriekswielen ook staan dat ze geschikt zijn voor een rijder tot 120 kg. De fabriekswielen met 24 spaken die dat aan kunnen moet ik echter nog voor de eerste keer zien. Overdrijven is verheven tot een ware kunst. Laat je dus niet verlijden tot het aankopen van dit soort wielen. We bouwen op wens van de klant al vele jaren heavy duty wielen geschikt voor rijders tot 140 kg en die hebben geen 24 spaken. 36 en soms zelf 40 of 48. Deze laatsten worden ook wel gebruikt bij tandems.

Wil je dus een set wielen die meer aan kunnen dan 100 kg, vraag dan naar de mogelijkheden.

Wat is de oorzaak van spaakbreuk?

Er zijn slechts 2 oorzaken van spaakbreuk:

  1. Ongelijke trekkracht (spaakspanning) in de spaken. Er hoeft maar 1 spaak een te grote afwijking mbt trekkracht te hebben ten opzichte van alle anderen en die spaak gaat op den duur kapot.
  2. Spaakgat in de flens te groot voor spaak.

Bij reden 1 krijgt de „slappe” spaak met de lagere trekkracht naar verhouding te veel op zijn donder. Hierdoor breekt uiteindelijk waarschijnlijk de spaakkop af.
Bij reden 2 gaat de spaak als het ware jutteren in het gat. Op den duur met fatale gevolgen.
Torsie in spaken gaat er tijdens het gebruik uit. Dat wil zeggen dat de spaak zich ontspant en dus een lagere trekkracht krijgt dan de bedoeling was. Hierdoor valt dit euvel onder 1. In veel fabriekswielen zit vaak nog torsie.
Daarnaast komt het vaak voor dat niet de spaak breekt maar dat de nippel afgebroken is. Hoe kan dat? Dat kan doordat de nippel overbelast is. Dit zie je wel eens bij aluminium nippels en zware rijders. Tot ongeveer 85 kg is het verantwoord om aluminium nippels te gebruiken. Daarboven wordt het risico op nippelbreuk groter. Wat vaker voorkomt is dat de spaak niet ver genoeg in de nippel is gedraaid. Hierdoor krijg je in de nippel een zwakpunt (een holle nippel) waardoor de kop van de nippel kan afbreken. Dit zie je vaak bij machinaal gespaakte fabriekswielen. De juiste spaaklengte is dus essentieel voor de bouw van kwaliteits wielen. Tenslotte kan een nippel ook afbreken as gevolg van een te lage spaakspanning. De aluminium nippel gaat dan eerder stuk dan de RVS spaak die sterker is.

Hoe vast moeten spaken worden aangedraaid?

Deze vraag wordt ook wel eens op een andere manier gesteld:
Wat is de juiste spaakspanning?
 Op welke trekkracht moet ik de spaken zetten?
Het antwoord hierop is niet eenduidig te geven. Een wiel moet zo stevig zijn dat het de krachten die het te verwerken krijgt goed kan verwerken zonder daarbij kapot te gaan. Een wiel is niet steviger dan een ander wiel omdat de trekkracht in de spaken in het ene wiel hoger is dan in het andere. Binnen een bepaalde range van trekkracht (in Newtons (N)) is alles goed, mits de trekkracht in alle spaken zo gelijk mogelijk is en het niet te laag is en niet te hoog. Spaakbreuk treedt onder andere op wanneer in 1 of meerdere spaken de trekkracht lager is dan in de rest.

Naven zijn er in diverse soorten. De kwaliteit van naven wordt bepaald door een aantal zaken. Dit bepaalt uiteraard ook uiteindelijk voor een groot deel de prijs. Belangrijk is de soort en de kwaliteit van de lagers en de afdichting van het huis zodat vuil en of water niet in de naaf kan komen.

Lagers

Er zijn diverse soorten lagers waaronder de meest gangbare: kogellagers (Shimano gebruikt deze cup / conus lagers), industrielagers en ceramische lagers. Alle lagers hebben voor- en nadelen. Keramische lagers hebben de laagste rolweerstand en zijn relatief licht in gewicht. Kogellagers zijn wat zwaarder maar kunnen bij goed onderhoud erg lang mee gaan. Industrielagers zijn in principe onderhoudsvrij. Zijn ze echter kapot dan heb je meestal speciaal gereedschap nodig om ze eruit te halen en er weer in te persen. Voordeel is wel dat je ze kunt vervangen. Als een Cup/conus lager niet meer goed werkt is dit meestal niet te herstellen.

Daarnaast gaat het ook om het aantal lagers in een naaf, de grote van de lagers en het materiaal waarvan ze gemaakt zijn (staal of RVS). De levensduur van lagers is technisch te berekenen op basis van de krachten die erop komen en het aantal omwentelingen van het lager. Helaas gebruiken niet alle navenbouwers de allerbeste lagers.

In veel geavanceerde en dus vaak in duurdere naven zitten afstelbare of hoek contact lagers. Deze technisch mooie lagers vergen wel om de juiste afstelling (voorspanning). Is deze voorspanning te laag dan heeft het lager speling en loopt binnen no time kapot. Staat het lager te strak afgesteld dan loopt het ook niet goed en gaat ook stuk. Kortom alleen met de juiste afstelling draait dit als een zonnetje. Rijders die liever niet wekelijks hun wielen op speling willen controleren en dit zonodig bijstellen kunnen beter kiezen voor een industrielager zoals dat in onder andere DT Swiss en Hope zit.

De techniek van wielen is pure mechanica

Wielen worden door mij met de grootste zorgvuldigheid in elkaar gezet.
Hier een voorbeeld van hoe een mooie set wielen bij mij binnen kwam. De rijder had toch wat problemen.
Van het achterwiel waren inmiddels een paar spaken gebroken. Het voorwiel was nog heel maar voelde vreemd aan.
Door het in de bok te plaatsen kon ik meten hoe recht het was en hoe het met de spaakspanning was gesteld.
Onderstaand cirkeldiagram geeft aan hoe het wiel dat prima recht was op spanning stond.
Het gaat om een voorwiel met 36 spaken en een MTB velg. De spaakspanning was helaas niet geheel wat het zijn moet.

90,61 komt overeen met 53 kg , 92 komt overeen met 55 kg. Een voorwiel zou voor dit type velg met dit aantal spaken en dit gewicht van de rijder ongeveer op 80-90 kg moeten staan. Dat is 25 kg minder en dat is bijna 30% te laag.
Na alles los te hebben gehaald en opnieuw opgespannen te hebben zag het wiel er zo uit:

De rode en de blauwe lijn liggen nagenoeg over elkaar. Kleine afwijkingen zijn geen probleem zolang deze niet te groot zijn. Dit heeft te maken met de velg. Daar waar deze aan elkaar gemaakt is zit meestal wat meer materiaal waardoor de treksterkte van de spaken op die plek vaak wat groter moet zijn om alles in balans te krijgen. Tegenover de lasnaad zit het ventielgat waar sprake is van het tegenovergestelde: iets minder materiaal.

In de nieuwe situatie is de trekkracht ongeveer overal gelijk en is de afwijking tussen de spaken onderling minimaal.
108 komt overeen met met 88 kg.

Hieronder een verdere uitleg over wat de krachten doen met een wiel.
Voor techneuten is de uitleg waarschijnlijk goed te volgen. Ik hoop dat minder technisch onderlegde lezers het ook verder goed kunnen volgen.

Bij het ronddraaien van wielen veert het vlak dat in direct contact is met de weg een beetje naar binnen in. Hierdoor neemt de trekkracht van de spaken, die in dit deel van de velg geplaatst zijn (zie tekening, rode pijl), iets af. Een fractie later is dat door de rollende beweging van de band en velg weer een andere spaak aan de beurt. De spaken naast de spaken waar de kracht afneemt krijgen juist de originele spaakspanning (zie tekening blauwe pijlen) weer terug die dus hoger is dan kort daarvoor. Hierdoor ontstaat dus een dynamisch belastings-patroon op de spaak waardoor deze op den duur kan breken. Een wiel zou juist gebaat zijn bij een statische belasting en dat is dus niet het geval.
Per omwenteling van het wiel krijgt dus elke spaak een keer te maken met deze wisseling in trekkracht (vaak noemt men dit de wisseling in spaakspanning, terwijl het een verlaging van de trekkracht is). Onderstaande grafiek geeft aan wat er dan gebeurt.

Bron: Henri P. Gavin, Associate Member ASCE, Assistant Professor, Department of Civil Engineering, Duke University, Durham, NC 27708-0287

Een wiel legt per omwenteling ongeveer 2 meter af. Per 10 meter krijgt elke spaak dus 5 keer te maken met zo’n trekkrachtverlies. Per kilometer is dat 500 keer.
Rijd je dus 10.000 km per jaar op je fiets dan krijgt elke spaak hier 10.000 X 500 keer mee te maken en dat is 5 miljoen keer.
Als het wiel op de juiste manier is gemaakt dan heeft deze beweging geen kwaliteitsverlies tot gevolg.
Is een wiel daarentegen niet goed gebouwd dan zal spaakbreuk op den duur het gevolg zijn.

Hoe vast moeten spaken worden aangedraaid?

Deze vraag wordt ook wel eens op een andere manier gesteld:

Wat is de juiste spaakspanning?
 Op welke trekkracht moet ik de spaken zetten?

Het antwoord hierop is niet eenduidig te geven. Een wiel moet zo stevig zijn dat het de krachten die het te verwerken krijgt goed kan verwerken zonder daarbij kapot te gaan. Een wiel is niet steviger dan een ander wiel omdat de trekkracht in de spaken in het ene wiel hoger is dan in het andere. Binnen een bepaalde range van trekkracht (in Newtons (N)) is alles goed, mits de trekkracht in alle spaken zo gelijk mogelijk is en het niet te laag is en niet te hoog. Spaakbreuk treedt onder andere op wanneer in 1 of meerdere spaken de trekkracht lager is dan in de rest.

Onderzoek heeft aangetoond dat de stevigheid van een wiel binnen een bepaalde range niet afneemt. Onderstaande grafiek laat zien wat er gebeurt wanneer je alle nippels van een wiel telkens een kwart slag losser draait.
Zoals u kunt zien doet het niets af aan de stevigheid van het wiel totdat je de grens bereikt waarop de spaken los komen te zitten. Ik kan niet helemaal inschatten hoeveel Newton verlies een kwartslag hier veroorzaakt maar zeker is dat 10 slagen zeker een paar honderd Newton is.

Bron: Damon Rinard’s Wheel Stifness Test

In de praktijk blijkt ook dat wielen met een goede gelijke trekkracht in alle spaken het langst meegaan ongeacht of dat bijvoorbeeld 700 N of 900 N is.